Memorandum

TO: Town of Lysander Comprehensive Plan Update Committee
FROM: Meghan Vitale, SMTC
DATE: October 14, 2014

RE: Existing conditions assessment (Technical Memorandum \#3)

The SMTC has reviewed the outputs from our travel demand model for various intersections and segments within the Town of Lysander and conducted capacity analysis for selected intersections based on recent traffic count data. This memo summarizes the work conducted and our findings.

Review of volume-to-capacity ratios from SMTC's travel demand model
SMTC staff reviewed the volume-to-capacity ratios from the 2014 Existing Conditions travel demand model for road segments and intersections throughout the Town of Lysander.

The volume-to-capacity ratio varies from 0.0 to 1.0 and is a comparison of the current or projected traffic on a road or entering an intersection (in this case, the modeled volume) to the maximum traffic volume that the segment or intersection can reasonably be expected to accommodate. Values closer to 1.0 indicate that a segment or intersection is approaching capacity and operational issues may occur (drivers will experience longer delays). The volume-to-capacity ratio is abbreviated "V/C".

Figures 1 and 2 show the V/C ratio for model links (segments) and nodes (intersections) within the Cold Springs Peninsula area of the Town of Lysander and part of the adjoining towns for the AM and PM peak hours, respectively. Both figures show the 2014 Existing Conditions based on the SMTC travel demand model outputs.

All modeled intersections within the town except one have existing V/C ratios below 0.70 , indicating good operation conditions. The intersection of Route 31and Route 370 (East Genesee Street and Salina Street in the Village of Baldwinsville) is the only intersection with a V/C ratio between 0.7 and 0.9 (and only during the PM peak hour), indicating that drivers likely experience longer delays at this intersection.

The vast majority of modeled road segments show very good existing conditions (V/C ratios less than 0.43 , or likely a level of service [LOS] A or B). The segments with higher V/C ratios include Route 31 near Willet Parkway, Route 370 between Hicks Road and River Road, Route 48 south of Route $31 / 370$, and Route $31 / 370$ east of Route 48 . However, the V/C ratios for these segments are still relatively low (less than 0.82) indicating that these roads generally experience acceptable operating conditions (LOS C or D). The only road segment that appears to be approaching capacity is Route 370 between River Road and John Glenn Boulevard in the PM peak hour, which carries nearly 1,500 vehicles in the PM peak hour based on the travel demand model. Although Route 31 near the boundary with the Town of Clay carries the highest traffic volume in the town (even more than Route 690), this segment has two travel lanes in each direction and, therefore, has a higher capacity than Route 370.

Existing conditions intersection capacity analysis

SMTC also conducted capacity analysis at selected intersections to gain more detailed understanding of existing traffic operations at these locations.

Technical Memorandum \#1 (August 4, 2014) summarized all of the recent turning movement counts that were conducted by the SMTC, the NYSDOT, and consultants. SMTC staff conducted turning movement counts at five intersections, and conducted a capacity analysis for each of these intersections under AM and PM peak hour conditions. The capacity analysis was conducted using Synchro 7 software. The resulting LOS and delay information is summarized in Table 1 and Table 2 for signalized and unsignalized intersections, respectively. Tables 1 and 2 also include level of service information from the "Timber Banks with YMCA Traffic Assessment - Response to NYSDOT Comments" (GTS Consulting, March 2013) for an additional four intersections. Attachment A contains the reports from Synchro for the five intersections analyzed by the SMTC.

Table 1: Summary of Existing Conditions Capacity Analysis, Signalized Intersections

Intersection Approach	Movement	AM peak hour LOS (delay)	PM peak hour LOS (delay)	Source
Route 690 /	Boulevard	B (16)	B (15)	SMTC
Eastbound	Left/through/right	B (14)	B (19)	
Westbound	Left/through	C (23)	C (24)	
	Right	B (13)	B (18)	
Northbound	Left	C (28)	C (24)	
	Through	B (13)	B (11)	
	Right	B (12)	A (9)	
Southbound	Left	C (27)	C (23)	
	Through	B (15)	B (12)	
	Right	B (12)	B (10)	
Route 370 /		B (15)	B (18)	SMTC
Eastbound	Left/through	C (27)	D (38)	
	Right	C (43)	C (32)	
Westbound	Left	B (13)	B (17)	
	Through/right	A (7)	A (10)	
Northbound	Left/through	C (22)	C (28)	
	Right	A (6)	A (7)	
Southbound	Left/through/right	C (22)	C (24)	
Route 370 /	631	A (7)	A (7)	SMTC
Eastbound	Left	A (5)	A (5)	
	Through	A (6)	A (7)	
Westbound	Through	A (6)	A (8)	
	Right	A (2)	A (3)	
Southbound	Left	B (15)	B (12)	
	Right	B (13)	B (11)	
Route 31 / Ris	oad	C (22)	C (27)	GTS
Eastbound	Left	D (43)	D (43)	
	Through	C (21)	C (30)	
	Right	A (5)	A (7)	
Westbound	Left	D (45)	E (57)	
	Through/right	B (14)	B (19)	
Northbound	Left	C (22)	C (28)	
	Through	D (38)	D (37)	
	Right	C (25)	C (22)	
Southbound	Left	C (29)	C (24)	
	Through/Right	D (36)	C (33)	

LOS = Level of service. Delay is the average delay per vehicle, in seconds.
Note: Bold text indicates the overall LOS and average delay for a signalized intersection.
Source: SMTC, 2014; "Timber Banks with YMCA Traffic Assessment - Response to NYSDOT
Comments" by GTS Consulting, March 2013.

Table 2: Summary of Existing Conditions Capacity Analysis, Unsignalized Intersections

Intersection Approach	Movement	AM peak hour LOS (delay)	PM peak hour LOS (delay)	Source
Route 370 / Route 690 SB ramps				SMTC
Eastbound	Left	B (10)	B (10)	
Southbound	Left/right	C (23)	C (20)	
Route 370 / Route 690 NB ramps				SMTC
Eastbound	Left	A (8)	A (8)	
Southbound	Left	B (15)	C (21)	
	Right	B (12)	C (21)	
Route 370 / Hicks Road / Hayes Road				GTS
Eastbound	Left/through/right	A (1)	A (1)	
Westbound	Left/through/right	A (1)	A (1)	
Northbound	Left/through/right	B (15)	C (21)	
Southbound	Left/through/right	F (69)	D (35)	
Route 370 / River Road				GTS
Eastbound	Left/through	A (1)	A (1)	
Westbound	Through/right	A (0)	A (0)	
Southbound	Left/right	F (95)	F (193)	
River Road / Patchett Road / Hicks Road				GTS
Northbound	Left/through/right	A (5)	A (6)	
Northwestbound	Left/through/right	A (4)	A (5)	
Southbound	Left/through/right	A (7)	A (9)	
Eastbound	Left/through/right	A (5)	A (6)	
Westbound	Left/through/right	A (3)	A (3)	

LOS = Level of service. Delay is the average delay per vehicle, in seconds.
Note: For unsignalized intersections, the HCM methodology does not provide an overall LOS or delay. Source: SMTC, 2014; "Timber Banks with YMCA Traffic Assessment - Response to NYSDOT Comments" by GTS Consulting, March 2013.

The signalized intersections that were examined all operate at good overall levels of service with minimal to moderate delay. Most individual movements operate at LOS A or B with minimal delay. The Route 31/River Road intersection operates with the greatest delay of the intersections considered, although it still operates at an overall LOS C. Some individual movements at this intersection experience greater delay, operating at LOS D or E. The westbound left turn movement from Route 31 to River Road experiences the highest delay - at 57 seconds and LOS E - of any of the movements examined for signalized intersections.

In 2013, the NYSDOT conducted capacity analysis for the Route 370/John Glenn Boulevard intersection in the Town of Salina. This analysis indicates that the intersection operates at an
overall LOS F during the AM peak hour and LOS E during the PM peak hour, with the following individual movements operating at LOS F:

- Route 370 eastbound left (AM)
- Route 370 eastbound through/right (AM and PM)
- Route 370 westbound through/right (PM)
- John Glenn Boulevard northbound left (PM)

Turning movements at the unsignalized intersections that were examined mostly operate at LOS A, B, or C, indicating relatively good operations with little delay to drivers. The exceptions are the southbound movements from River Road to Route 370 and the southbound movements from Hicks Road to Route 370, which operate at LOS D or F. At both of these locations, there is a single southbound lane from which to make all turning movements onto Route 370 and most of the southbound traffic on Hicks Road and River Road turns left onto Route 370. The southbound left turn volume at both of these intersections is approximately 200 vehicles in the AM peak hour and 100 vehicles in the PM peak hour, and the volumes on Route 370 vary from around 700 vehicles per hour to over 1,300 vehicles per hour. The result is that drivers trying to turn onto Route 370 from Hicks Road or River Road may experience delay, on average, of 1 to 3 minutes. According to the "Timber Banks with YMCA Traffic Assessment - Response to NYSDOT Comments" (GTS Consulting, March 2013), both of these locations may be considered for a signal warrant analysis once the reduced initial build out levels for Timber Banks are reached.

Summary

In general, the results of our intersection capacity analysis and review of the travel demand model outputs for segments and intersections indicate that traffic flows quite well in the Town of Lysander under the existing conditions. There are a few isolated areas of moderate concern such as Routes 31/370 and Route 48 near the "four corners" in Baldwinsville and Route 31 near Willett Parkway which may begin to approach capacity in the future, depending on the level of development and amount of new trips that are generated. There are also a few places that currently experience "poor" levels of service. These locations include the unsignalized intersections of Hicks Road and River Road with Route 370, the westbound left-turn movement from Route 31 onto River Road, and Route 370 between River Road and John Glenn Boulevard. Future development plans should be mindful of the potential for additional traffic at these locations, which would exacerbate the existing concerns. Mitigation measures, such as new traffic signals, may need to be considered as part of future development plans; however, this would require additional technical analysis and coordination with the NYSDOT. The cost of installing and maintaining a traffic signal - or any transportation infrastructure that increases capacity - should be weighed against the likely benefit to all residents and the potential to induce additional demand in the future.

Attachment A

Synchro reports

	\rangle			7		4		4	p	\checkmark	$\frac{1}{\downarrow}$	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow	「	\％	性	F	\％	性	「
Volume（vph）	5	44	127	158	17	38	33	228	67	41	444	3
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		6.0			6.0	6.0	5.0	7.0	7.0	5.0	7.0	7.0
Lane Utill．Factor		1.00			1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.90			1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		1.00			0.96	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1667			1663	1615	1492	3312	1429	1687	3374	1615
Flt Permitted		0.99			0.65	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）		1649			1138	1615	1492	3312	1429	1687	3374	1615
Peak－hour factor，PHF	0.81	0.81	0.81	0.78	0.78	0.78	0.83	0.83	0.83	0.90	0.90	0.90
Adj．Flow（vph）	6	54	157	203	22	49	40	275	81	46	493	3
RTOR Reduction（vph）	0	114	0	0	0	35	0	0	55	0	0	2
Lane Group Flow（vph）	0	103	0	0	225	14	40	275	26	46	493	1
Heavy Vehicles（\％）	0\％	5\％	2\％	9\％	12\％	0\％	21\％	9\％	13\％	7\％	7\％	0\％
Turn Type	Perm			Perm		Perm	Prot		Perm	Prot		Perm
Protected Phases		4			8		5	2		，	6	
Permitted Phases	4			8		8			2			6
Actuated Green，G（s）		13.9			13.9	13.9	2.5	15.9	15.9	2.5	15.9	15.9
Effective Green， g （s）		13.9			13.9	13.9	2.5	15.9	15.9	2.5	15.9	15.9
Actuated g／C Ratio		0.28			0.28	0.28	0.05	0.32	0.32	0.05	0.32	0.32
Clearance Time（s）		6.0			6.0	6.0	5.0	7.0	7.0	5.0	7.0	7.0
Vehicle Extension（s）		2.0			2.0	2.0	2.0	5.7	5.7	2.0	5.7	5.7
Lane Grp Cap（vph）		456			314	446	74	1047	452	84	1067	511
v／s Ratio Prot							0.03	0.08		c0．03	c0．15	
v／s Ratio Perm		0.06			c0．20	0.01			0.02			0.00
v／c Ratio		0.23			0.72	0.03	0.54	0.26	0.06	0.55	0.46	0.00
Uniform Delay，d1		14.1			16.4	13.3	23.3	12.8	12.0	23.3	13.8	11.8
Progression Factor		1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2		0.1			6.4	0.0	4.3	0.3	0.1	3.9	0.8	0.0
Delay（s）		14.1			22.8	13.3	27.6	13.2	12.1	27.2	14.6	11.8
Level of Service		B			C	B	C	B	B	C	B	B
Approach Delay（s）		14.1			21.1			14.4			15.7	
Approach LOS		B			C			B			B	
Intersection Summary												
HCM Average Control Delay			16.1		HCM Leve	of Service			B			
HCM Volume to Capacity ratio			0.58									
Actuated Cycle Length（s）			50.3		Sum of los	time（s）			18.0			
Intersection Capacity Utilization			55．9\％		CU Level	fervice			B			
Analysis Period（min）			15									

Analysis Period（min） 15
C Critical Lane Group

	\rangle						4	\uparrow			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＄			4	「	\％	㘴	「	${ }^{*}$	斥	「
Volume（vph）	2	36	55	89	35	43	121	534	155	62	301	3
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		6.0			6.0	6.0	5.0	7.0	7.0	5.0	7.0	7.0
Lane Util．Factor		1.00			1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.92			1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		1.00			0.97	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1746			1656	1615	1787	3539	1442	1770	3282	1615
Flt Permitted		0.99			0.81	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）		1728			1382	1615	1787	3539	1442	1770	3282	1615
Peak－hour factor，PHF	0.69	0.69	0.69	0.92	0.92	0.92	0.92	0.92	0.92	0.89	0.89	0.89
Adj．Flow（vph）	3	52	80	97	38	47	132	580	168	70	338	3
RTOR Reduction（vph）	0	67	0	0	0	40	0	0	100	0	0	2
Lane Group Flow（vph）	0	68	0	0	135	7	132	580	68	70	338	1
Heavy Vehicles（\％）	0\％	0\％	0\％	15\％	0\％	0\％	1\％	2\％	12\％	2\％	10\％	0\％
Turn Type	Perm			Perm		Perm	Prot		Perm	Prot		Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8		8			2			6
Actuated Green，G（s）		7.9			7.9	7.9	6.1	20.3	20.3	4.0	18.2	18.2
Effective Green， g （s）		7.9			7.9	7.9	6.1	20.3	20.3	4.0	18.2	18.2
Actuated g／C Ratio		0.16			0.16	0.16	0.12	0.40	0.40	0.08	0.36	0.36
Clearance Time（s）		6.0			6.0	6.0	5.0	7.0	7.0	5.0	7.0	7.0
Vehicle Extension（s）		2.0			2.0	2.0	2.0	5.7	5.7	2.0	5.7	5.7
Lane Grp Cap（vph）		272			217	254	217	1431	583	141	1190	586
v／s Ratio Prot							c0．07	c0．16		0.04	0.10	
v／s Ratio Perm		0.04			c0．10	0.00			0.05			0.00
v／c Ratio		0.25			0.62	0.03	0.61	0.41	0.12	0.50	0.28	0.00
Uniform Delay，d1		18.5			19.8	17.9	20.9	10.7	9.3	22.1	11.4	10.2
Progression Factor		1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2		0.2			4.0	0.0	3.3	0.5	0.2	1.0	0.3	0.0
Delay（s）		18.7			23.7	17.9	24.2	11.1	9.6	23.1	11.7	10.2
Level of Service		B			C	B	C	B	A	C	B	B
Approach Delay（s）		18.7			22.2			12.8			13.6	
Approach LOS		B			C			B			B	
Intersection Summary												
HCM Average Control Delay			14.6		HCM Leve	of Service			B			
HCM Volume to Capacity ratio			0.43									
Actuated Cycle Length（s）			50.2		Sum of los	time（s）			11.0			
Intersection Capacity Utilization			47．6\％		CU Level	fervice			A			
Analysis Period（min）			15									

Analysis Period（min） 15
C Critical Lane Group

